
Theoret. ehim. Acta (Berl.) 5, 179--186 (1966) 

Commentationes 

Four-Particle Perimetric Coordinates* 

"~EOtIESKEL I~ASIEL 

Department of Chemistry, University of Illinois at Chicago Circle, Chicago, Illinois 60680 

JOHN KARL 

Department of Physics and Theoretical Chemistry Institute, University of Wisconsin, Madison, 
Wisconsin 53715 

Received April 13, ~[966 

An attempt was made to find perimetric coordinates for a 4-particle system. It  is conjec- 
tured that such coordinates do not exist. 

Es wurde ein Versuch gemacht, Perimeter-Koordinaten fiir ein 4-Teilchen-System zu 
finden. Es ~drd vermutet, dab solehe Koordinaten nicht existieren. 

On a fair une tentative pour ~rouver des coordonn~es p6rim~triques d'un syst@me a 4 
particules. On pense que de telles eoordorm6es n'existent pus. 

Introduction 
As is well known, the independent  particle model of  many-electron atoms and 

molecules is inadequate  for the detailed description of the relative mot ion of the 
individual electrons. I t  has been shown by  m a n y  workers [1] tha t  the simple (but 
tedious) approach of  superimposing configurations leads to a ra ther  slowly con- 
verging process. 

On the other hand, the introduct ion of interelectronic distances into the wave 
function as independent  variables, wtdle giving lots of "mileage" in terms of  
configuration interaction, as shown by  the results of HYLL~A~tS [2] on helium 
and JAZZES and COOLIDGE [3] on lithium, also leads to difficult integrals, encoun- 
tered in the calculation of the Hamil tonian  matr ix  elements [4]. The difficulty of  
comput ing these integrals depends, in general, on the way  in which the inter- 
electronic distances appear  in the wave function. I n  fact, P~KE~IS [5] by-passed 
integral computa t ion  by  a coordinate t ransformat ion into perimetric coordinates 
[6] for the helium atom. 

The 6~round State of Itelium 
PnKE~IS [5] has calculated one of the most  [6] accurate wave functions for the 

ground state of  helium by  a modification of the I tyl leraas technique,  which 
inchided interelectronic distances. The essence of  the method,  for a 2-electron 
system in an s-state is as follows. 
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where 

Assume the wave function to have the form 

~8 

~f= N e - ~ -  ~ Cl, m, nkl+m+nsltmu n (l) 

8 :  r 1 § r2, t ~ r 1 -  r2, u =  r12 

are the Hy]leraas coordinates, and the Hamiltonian after extraction of Euler 
angles depends only on the three distance coordinates: 

+ ~ - ~ i + ~  ~ ~ - ~ + ~  a 
+ § 

rl r12 ~rl ~r12 r2 r12 are at12 

Usually/c is chosen as a variational parameter,  but in order to require the correct 
asymptotic behavior of ~0 when s -~ co and to reduce the calculations P~KEa~S set 

k = 2 V - E = 2 e  (3) 

where E is the electronic energy. 
Since the Itylleraas coordinates are not independent, due to the triangular 

conditions, they are replaced by  a set of variables which are independent: 

2 u l  = ( - r~ + r~ § r ~ ) / c  

2 u 2 = (r~ - r~ + r~2) ]c (4 )  

U s = (r�94 § ?'2 - -  ?'12) ~ 

o r  

~] = A R .  (5)  

The variables {u~} are independent, and can take any arbitrary positive value. The 
factor of 2 is introduced for the convenience of having 

The {ui} are called perimetric coordinates [6]. The volume element is given by 

d~ = t - 6 ~  (ul + u2) (2 ul + ua) (2 u2 + us) dul du~ du3 (6) 

and a transformation of H into perimetric coordinates is straightforward. 
We now transform Eq. (i) into 

= Ne - ~  +u3) E (u 1 u2 us) (7) 

and assume F to have the form 

F = ~ Al, m,n LI (Ul) Lm (u2) Ln (Ua) (8) 
l,m,n 

where Lp (x) denotes the normalized Laguerre polynomial of order p which are 
appropriate for the region zero to infinity with an exponential weight factor. By  
substitution of Eq. (7) into the wave equation, and use of the recursiou relations : 
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2 L~ (x) = (2 - l )  L~ (2) - ~ Ln (x) 

2 L n (x )  = n L n  (x )  - ~ L n _  1 (x )  (9) 

2 L~ (x) = - (n + i) L~+I (x) + (2 n + 1) L~ (x) -- ~ L~-I  (x). 

One gets a recursion relation between the Al,m,n which is long, but  not unman- 
ageable. This recursion relation has the form 

C~,,~,~, (l, m, n; lc) A (l § c~, m § fi, n § ?; lc) = O . (i0) 
~,B,r=-~ 

Symmetry  conditions may  simplify Eq. (10); thus, if ~0 is symmetric, 

A~,m,n ~ Am,~,n (para) 

and if ~0 is antisymmetrie 

A~,m,n ~ - A m ,  z,n (ortho) . 

The important  point is, tha t  due to the particular choice of the Lm (x) in the 
expansion of F, the matr ix  associated with the set of homogeneous linear Eq. (t0) 
is Hermit ian [7]. Since we have a linear equation for each choice of (l, m, n), we 
now have an infinite secular equation, which can be truncated when the deter- 
minant  of the coefficient is symmetric. The vanishing of the determinant will then 
yield a value of/c, and consequently E. Actually, the method is completely equiva- 
lent to the variation method. However, all the elements of the secular determinant 
are integers, and no integrals are computed. Also, the determinant is sparse, non 
zero elements are concentrated in a band along the diagonal. PEKnaIS actually 
used a i071-order determinant and achieved not only accurate energy but  also 
other l- and 2-electron expectation values. 

The Four-Particle System 

We at tempted to find a corresponding transformation which would yield 
perimetric coordinates for a four-particle system. I t  is more convenient to search 
for A -1 than for A itself. 

where 

R = A -1 U ,  U :  A R (l) 

r2 ~ 

T3 V = ~ 
R ~ r12 u~ 

~ r 1 3  / u~ 
\r23/ U6 

The demand tha t  the {u~} range independently from zero to infinity means that  
there should be a one-to-one correspondence between all sets of 6 positive 
numbers {ut} and all tetrahedrons (within a par i ty  transformation). At this point 
it is clear that  since r,, r,j > 0, every element in .4 -1 is positive or zero; in the 
latter case the tetrahedron m a y  degenerate into a triangle. 

t3" 
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The correspondence {u~} --, t e t r a h e d r o n  is me t  ff the  r e l evan t  t r i angu la r  condi-  
t ions on the  r~, rtj are satisfied. There are twelve  of  these, three  for each of  the  four 
t r iangles  which form the  t e t r ahed ron  faces. 

r3 

Fig. 1 

All the  d is tances  in the  d i ag ram can be fixed a rb i t ra r i ly ,  wi th in  the  t r i angu la r  
condit ions,  to  de te rmine  the  size and  shape of  a unique t e t r ahedron ,  wi th in  a 
p a r i t y  t rans format ion .  The d i s y m m e t r y  of the  t e t r ahed ron  can be t a k e n  in to  
account  b y  a weight  fac tor  of 2 for each configuration.  

The t r i angu la r  condit ions which mus t  be obeyed  are:  

r 1 + r~ - -  rls ~ 0 

r 1 - -  r 2 § r12 >_ 0 

- -  r 1-~ r 2 @  r12  ~ 0 

Let t ing  A -1 = B,  we get  for example :  

r 1-]- r 3 -  r13 ~ 0 

r 1 - r 8 + rla >_ 0 

etc. 

(2) 

A - I = B _ _  

rl  + r2 - -  r l s  = b l l  ul + bls us § bla u3 + � 9  

be1 u 1 + b~ u s + b2a% § . . .  

- -  b~l ul  --  b4s us --  b4a u3 - . . .  

Therefore,  i f  th is  t r i angu la r  condi t ion  is to  be satisfied for a r b i t r a r y  values of  the  
ui 's  we m u s t  require  t h a t  

bll § be1 - b41 ~ 0 

bls § b s ~ -  b4s ~ 0 .  

etc. 

Fol lowing th rough  with  th is  we get  t r i angu la r  condi t ions be tween cer ta in  e lements  
in each column of  the  m a t r i x  B. Wr i t i ng  
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the tr iangular  conditions are 
A(a b d) 
A(a ~ e) (3) 

A(b c ]) 

A(~ e /) 

where A (a b d) means tha t  the numbers  a, b and d form a triangle. This set of 
conditions must  hold in each column. I t  is easy to pick positive matr ix  elements 
of B such tha t  these conditions are satisfied in each column and thus every set of 
positive u~'s does form a tetrahedron.  However,  if the matr ix  is constructed in this 
manner  with no further  considerations, not  all possible te trahedrons will be 
" reached"  by  the transformation.  There will be imposed superfluous t r iangular  
conditions of  the form of Eq. (2) tha t  will be satisfied which are not  t rue for an 
arbi t rary  tetrahedron.  For  example, one m a y  find tha t  

r 1 + r a -  r~a = a u 1 + b u 2 >_ 0 

where a and b are positive numbers  formed by  the sum and difference of  some of 
the elements of B. Now there are 

6 . 5 . 4  
--  60 

2 

conditions of the form of Eq. (2) and out of these t2 of them must  be positive in 
order to assurre tha t  any  set of  ui's does form a tetrahedron.  The remaining 48 
combinations mus t  be unrestricted so there be no limitation on the tetrahech, on 
imposed by  the transformation.  Thus we want  something like 

rl + ra - r~s = a u 1 + b u~ (4) 

where a > 0 and b < 0 for each of  the 48 combinations of r 1 r e r~ h2 r~3 r~3. There 
is no difficulty in gett ing the a > 0. The problem is to get a coefficient b < 0. Thus 
the "difficult" conditions which the Matrix B must  meet  are : 

(~) all elements of B are _> 0. 
(fi) The i2 t r iangular  conditions (3) mus t  be satisfied between the elements of  

each column. 
(y) Take any  two elements minus a third, all from the same column. I f  this 

combinat ion is not  one of the i2 conditions from (3), the combinat ion must  be 
negative definite in at  least one of the six columns. 

The other conditions which B must  satisfy are, in general, easily met. For  
example, the combinat ion ment ioned in step (y) above must  also be positive 
definite in at least one column. But  this is easily achieved. Also we do not  want  
to form a mat r ix  tha t  is singular. 

The difficulty is producing the 48 negative definite numbers  in step (y). Our 

B ~  0 t { 0 
1 0 0 0 (5) 

0 i 0 i 
1 t 0 t 

best a t t empt  at  this is: 
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In  each of the first four columns nine different negative numbers are obtained out 
of the 48. This is a good average since if distributed evenly we would need to get 
eight per column. However, in the last two columns only four negative numbers 
are obtained per column. This all adds up to 44, four short of the 48, giving four 
unnecessary limitations on the shape of possible tetrahedrons described by the 
U variables when the u's are defined by  U = B -1 R. (B -1 does exist in this case). 

I t  is very difficult to see how to improve on the B given in Eq. (5). Any scheme 
other than the first four columns does not yield enough negative numbers per 
column to add use to 48. (For example, if  matr ix  elements other than  zero or one 
are used, we could not even construct a single column that  would yield the mini- 
mum of eight negative numbers.) And we can not seem to find two remaining 
columns that  give the required 12 more negative numbers. We observe that  we 
have, in fact, exhausted all possible matrices composed of elements which are 
either zero or one, and since these most successful matr ix  elements do not actually 
yield perimctric coordinates, we are led to the following conjecture : 

Perimctric coordinates, in the sense discussed here, do not exist for the four 
particle system. (One might also ask for perimetric coordinates associated with 
orthogonal polynomials other than Laguerre.) 

Unit Tetrahedrons 

Since the above discussion of an a t tempt  to find the four particle perimetries 
coordinates seems to raise the question of their existanee, it might be advantageous 
to t ry  to state the problem more formally so tha t  one could work toward an 
existance proof of some kind. This might proceed along the following lines. 

Writing out R = B U: 

t 11 i) r~ b21 ul + b22 us + b23 ua + 
r3 = b31 ul + b82 Us + b83 u3 § 

r12 �9 . . 

\ r~3/ 

\ r ~ 3 /  

+ . . .  (6) 

o r  

R = Ul T1 + ~2 T2 + u3 T8 + . . .  (7) 

where Ti are the columns of the matr ix  B. Motivated by  Eq. (5) we call these T ' s  
"unit  tetrahedrons" because the columns of B in Eq. (5) are degenerate tetrahe- 
drons reminding us of, say, the matrices 
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00) ' (0 ~ 0 0 
which are "unit matrices" spanning the space of all 2 • 2 matrices. 

The unit tetrahedrons are defined by the triangular conditions among its 
elements given in Eq. (3). As mathematical entities, unit tetrahcdrons seem to be 
something new. They fall short on only one count of about ten requirements for 

being abstract vectors. This one unfilfilled condition is the existence of a T for a 

given T such that  T + T = 0, where addition is defined as indicated in Eq. (6). 
Now the following question can be formulated from considering Eq. (7) : Is the 

space of all possible tetrahedrons spanned by six unit tetrahedrons ? Perhaps in 
this fashion the problem may be put on a rigorous mathematical basis. 

,,Almost" Perimetrie Coordinates in the Case of tt 2 

The above unsuccessful attempt at finding perimetric coordinates leads to a 
transformation which does not permit all possible tetrahedrons. Thus a wave 
function in terms of these variables would be restricted in some way and might 
correspond to a trial function in a variational calculation. Therefore, it is of 
interest to examine the restrictions imposed by "almost" perimetrie coordinates. 

Fig. 2 

The four restrictions on the configuration of particles imposed by the transfor- 
mation B in Eq. (5) are: 

a+/>__b 
+ r >_ e (8) 

a+f>__4 

a+/>_e. 
Now, as an example, consider the H 2 molecule with the internuclear distance 

equal to the "a" above. The interelection distance would be "fl'. The conditions 
(8) then say that if the electrons are close together they are near the nuclei and if 
close enough together, the electrons will be between the nuclei. This seems like a 
reasonable approximation for H 2. In  this approximation PEKERIS'S series solution 
could be carried out for the t I  2 example. The attempt to show that this approxima- 
tion corresponds to a variational principle was unsuccessful. 
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