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An attempt was made to find perimetric coordinates for a 4-particle system. It is conjec-
tured that such coordinates do not exist.

Es wurde ein Versuch gemacht, Perimeter-Koordinaten fiir ein 4-Teilchen-System zu
finden. Es wird vermutet, daB solche Koordinaten nicht existieren.

On a fait une tentative pour trouver des coordonnées périmétriques d'un systéme a 4
particules. On pense que de telles coordonnées n’existent pas.

Introduetion

As is well known, the independent particle model of many-electron atoms and
molecules is inadequate for the detailed description of the relative motion of the
individual electrons. It has been shown by many workers [/] that the simple (but
tedious) approach of superimposing configurations leads to a rather slowly con-
verging process.

On the other hand, the introduction of interelectronic distances into the wave
function as independent variables, while giving lots of “mileage” in terms of
configuration interaction, as shown by the results of HyLrerAAs {2] on helium
and James and CooLIDGE [3] on lithium, also leads to difficult integrals, encoun-
tered in the calculation of the Hamiltonian matrix elements [£]. The difficulty of
computing these integrals depends, in general, on the way in which the inter-
electronic distances appear in the wave function. In fact, PERERIS [5] by-passed
integral computation by a coordinate transformation into perimetric coordinates
[6] for the helium atom.

The Ground State of Helium
PrxEris [6] has calculated one of the most [6] accurate wave functions for the
ground state of helium by a modification of the Hylleraas technique, which
included interelectronic distances. The essence of the method, for a 2-electron
system in an s-state is as follows.
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Assume the wave function to have the form

ks

p=Ne 2 Z ¢l m, p llrmAn gl pmyn (1)
i, m, n=0
where
§=1; + 7y t=1r — 1y U = 71,

are the Hylleraas coordinates, and the Hamiltonian after extraction of Euler
angles depends only on the three distance coordinates:
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Usually £k is chosen as a variational parameter, but in order to require the correct
asymptotic behavior of ¢ when s — oo and to reduce the calculations PEKERTS set

k=2Y—-—E=2¢ 3)

where F is the electronic energy.
Since the Hylleraas coordinates are not independent, due to the triangular
conditions, they are replaced by a set of variables which are independent:

2uy=(—ry+ry+rp)k
2uy=(ry — 1y 119 k 4)

Uy = (ry + 7y — 1) £
or

U=A4R. (5)

The variables {u;} are independent, and can take any arbitrary positive value. The
factor of 2 is introduced for the convenience of having

k> ri= > u=ks.
The {u@} are called perimetric coordinates [6]. The volume element is given by
2
dt = ({é;) (w0 + wg) (2 uy + ug) (2 uy -+ ug) duty dauy duig (6)

and a transformation of H into perimetric coordinates is straightforward.
We now transform Eq. (1) into

1
p = Ne 20Tt gy ) (1)
and assume F to have the form
F= z Arm,n Ly (wy) Ly (ws) Ly, (ug) (8)

I,m,n
where Ly (z) denotes the normalized Laguerre polynomial of order p which are
appropriate for the region zero to infinity with an exponential weight factor. By
substitution of Eq. (7) into the wave equation, and use of the recursion relations:
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x L, (x) = (x — 1) L, (x) — n L, (2)
x L, (x) = n Ly () —n Ly () (9
2 D (@) = — (04 1) Lpsa (@) + @5 + 1) Ly (@) — 1 Loy () .

One gets a recursion relation between the A; 4 which is long, but not unman-
ageable. This recursion relation has the form

+2
> Cupplmn;k)A(l+ o, m+f,n+y;k)=0. (10)

o By=—2

Symmetry conditions may simplify Eq. (10); thus, if y is symmetric,

Ay = Am,in (para)
and if y is antisymmetric
A =— Am,1,a (ortho) .

The important point is, that due to the particular choice of the L, (x) in the
expansion of ¥, the matrix associated with the set of homogeneous linear Eq. (10)
is Hermitian [7]. Since we have a linear equation for each choice of (I, m, n), we
now have an infinite secular equation, which can be truncated when the deter-
minant of the coefficient is symmetric. The vanishing of the determinant will then
yield a value of &, and consequently K. Actually, the method is completely equiva-
lent to the variation method. However, all the elements of the secular determinant
are integers, and no integrals are computed. Also, the determinant is sparse, non
zero elements are concentrated in a band along the diagonal. PErERIS actually
used a 1071-order determinant and achieved not only accurate energy but also
other 1- and 2-electron expectation values.

The Four-Partiele System

We attempted to find a corresponding transformation which would yield
perimetric coordinates for a four-particle system. It is more convenient to search
for A~ than for 4 itself.

R=41'U, U=A4R €D
where
7y Uy
Ty Uy
R=\|" v=|
719 Uy
*13 U
7'23 us

The demand that the {u;} range independently from zero to infinity means that
there should be a one-to-one correspondence between all sets of 6 positive
numbers {u;} and all tetrahedrons (within a parity transformation). At this point
it is clear that since #;, ry; > 0, every element in 41 is positive or zero; in the
latter case the tetrahedron may degenerate into a triangle.

13*
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The correspondence {u;} — tetrahedron is met if the relevant triangular condi-
tions on the #;, r4; are satisfied. There are twelve of these, three for each of the four
triangles which form the tetrahedron faces.

Fig. 1

All the distances in the diagram can be fixed arbitrarily, within the triangular
conditions, to determine the size and shape of a unique tetrahedron, within a
parity transformation. The disymmetry of the tetrahedron can be taken into
account by a weight factor of 2 for each configuration.

The triangular conditions which must be obeyed are:

7y 4 7y — ¥y 20 13— 73 =0
=Tyt 1= 0 7 — 7Ty +1r3=0 (2)
— 1 F g1 =0 ete.

Letting A-' = B, we get for example:
ryh Ty Tig = by Uyt by Uy F by ug £
Doy Uy + bog Uy + Bz g+ ...
— by Uy — Dyg Uy — byg Ug — ...
Therefore, if this triangular condition is to be satisfied for arbitrary values of the
w;’s we must require that
by + by — by = 0
byt by — by 2 0.

ete.

Following through with this we get triangular conditions between certain elements
in each column of the matrix B. Writing

A1=B=

—-—e Q0 R
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the triangular conditions are

Ala b d)
Ala ¢ e) (3)
A cf
Ald e f)

where A (¢ b d) means that the numbers a, b and d form a triangle. This set of
conditions must hold in each column. Tt is easy to pick positive matrix elements
of B such that these conditions are satisfied in each column and thus every set of
positive w;’s does form a tetrahedron. However, if the matrix is constructed in this
manner with no further considerations, not all possible tetrahedrons will be
“reached” by the transformation. There will be imposed superfluous triangular
conditions of the form of Eq. (2) that will be satisfied which are not true for an
arbitrary tetrahedron. For example, one may find that

Tyt Ty — Teg=a U+ buy >0

where @ and b are positive numbers formed by the sum and difference of some of
the elements of B. Now there are
6-5-4
2

conditions of the form of Eq. (2) and out of these 12 of them must be positive in
order to assurre that any set of u;’s does form a tetrahedron. The remaining 48
combinations must be unrestricted so there be no limitation on the tetrahedron
irnposed by the transformation. Thus we want something like

= 60

Py Ty — Tog =@ Uy + b U, 4)

where g > 0 and b < 0 for each of the 48 combinations of 1, 7, ry 75 713 795. There
is no difficulty in getting the a > 0. The problem is to get a coefficient b < 0. Thus
the “difficult” conditions which the Matrix B must meet are:

() all elements of B are = 0.

(B) The 12 triangular conditions (3) must be satisfied between the elements of
each column.

{y) Take any two elements minus a third, all from the same column. If this
combination is not one of the 12 conditions from (3), the combination must be
negative definite in at least one of the six columns.

The other conditions which B must satisfy are, in general, easily met. For
example, the combination mentioned in step (y) above must also be positive
definite in at least one column. But this is easily achieved. Also we do not want
to form a matrix that is singular.

The difficulty is producing the 48 negative definite numbers in step (y). Our
best attempt at this is:

O e DD

O OO

RN o B = N e Wl Y

OO D

= OO e

S = B O
C
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In each of the first four columns nine different negative numbers are obtained out
of the 48. This is a good average since if distributed evenly we would need to get
eight per column. However, in the last two columns only four negative numbers
are obtained per column. This all adds up to 44, four short of the 48, giving four
unnecessary limitations on the shape of possible tetrahedrons described by the
U variables when the «’s are defined by U = B! R. (B! does exist in this case).

It is very difficult to see how to improve on the B given in Eq. (5). Any scheme
other than the first four columns does not yield enough negative numbers per
column to add use to 48. (Ior example, if matrix elements other than zero or one
are used, we could not even construct a single column that would yield the mini-
mum of eight negative numbers.) And we can not seem to find two remaining
columns that give the required 12 more negative numbers. We observe that we
have, in fact, exhausted all possible matrices composed of elements which are
either zero or one, and since these most successful matrix elements do not actually
yield perimetric coordinates, we are led to the following conjecture:

Perimetric coordinates, in the sense discussed here, do not exist for the four
particle system. (One might also ask for perimetric coordinates associated with
orthogonal polynomials other than Laguerre.)

Unit Tetrahedrons

Since the above discussion of an attempt to find the four particle perimetrics
coordinates seems to raise the question of their existance, it might be advantageous
to try to state the problem more formally so that one could work toward an
existance proof of some kind. This might proceed along the following lines.

Writing out R= B U:

7y big Uy -+ byg Ug + Oz s + ...
7y Doy Uy + bog Ug + bog s + . ..
73 B bgy Uy -+ bgg g + bgg us + . ..
e | . . .
"1
To3
:: by by by
Ty boy bas bys
= Uy + Uy . + g + (6)
712
713
Y3
or
R=u T +uy To+u; Tg+ ... (7)

where T; are the columns of the matrix B. Motivated by Eq. (5) we call these Ts
“unit tetrahedrons’ because the columns of B in Hq. (5) are degenerate tetrahe-
drons reminding us of, say, the matrices
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o) 6o o)

which are “unit matrices” spanning the space of all 2 x 2 matrices.

The unit tetrahedrons are defined by the triangular conditions among its
elements given in Eq. (3). As mathematical entities, unit tetrahedrons seem to be
something new. They fall short on only one count of about ten requirements for
being abstract vectors. This one unfilfilled condition is the existence of a T for a
given T such that T + T = 0, where addition is defined as indicated in Eq. (6).

Now the following question can be formulated from considering Eq. (7): Is the
space of all possible tetrahedrons spanned by six unit tetrahedrons ? Perhaps in
this fashion the problem may be put on a rigorous mathematical basis.

,»Almost* Perimetrie Coordinates in the Case of H,

The above unsuccessful attempt at finding perimetric coordinates leads to a
transformation which does not permit all possible tetrahedrons. Thus a wave
function in terms of these variables would be restricted in some way and might
correspond to a trial function in a variational calculation. Therefore, it is of
interest to examine the restrictions imposed by “almost” perimetric coordinates.

Fig. 2

The four restrictions on the configuration of particles imposed by the transfor-
mation B in Eq. (5) are:

a+f=b
atf=c (8)
at+f=d
at+f=e.

Now, as an example, consider the H, molecule with the internuclear distance
equal to the “a” above. The interelection distance would be “f”. The conditions
(8) then say that if the electrons are close together they are near the nuclei and if
close enough together, the electrons will be between the nuclei. This seems like a
reasonable approximation for H,. In this approximation PErERIs’s series solution
could be carried out for the H, example. The attempt to show that this approxima-

tion corresponds to a variational principle was unsuccessful.
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